GHAPTER 1

ALGEBRAICALLY GENERATED FLOWS

2
A, Classes of Flows im B

Suppose that we wish to find the simplest non-
trivial class of first order systems of differential
equations in the Euclidean plane, EZ, which have a
given algebraic curve, P(x,y)=0, among their solutioms.
The curve can always be written in terms of its n

irreducible components in the complex field as

P(X!Y) Pl(X:YJ

i

P

1
For the sake of simplicity let us assume that P(x,y)
has no multiple components, that each component has
real points, and that complex components occur in
conjugate pairs.

Systems of differential equations are classified

in increasing order of complexity as linear, algebraic,
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analytic, differentiable or continucus. If we set

s n I

mi iilpiy jiipj

. T TL

R jliipi ’

then P(x,y)=C is the general solution since Pxi + Pyﬁ = 0.
The system is linear if n=2 and P; and P, are linear,
and algebraic otherwise. As a class of systems it is
trivial, primarily because it contains only one member,
but also because the general solution is known.

We may get a nontrivial class with the same

degree of complexity by letting

3 I n

X = 1EIA1P1Y Jilpj R
D n n

v = —iilAiPiX j;ipj 4 $iiP

where the Ai‘s are nonzero constants., On Pi’

n n
= Aipiy _H_Pj and 'y = -A;Psy AP, , since P, has
3Fi j#i
3 a n
real points, and Pixx + Piyy = Ai j;ipj(PiXPiy_PiypiXJ=0‘

So Pi(x,y)=0 is a solution, and P(x,y)=0 is a solution.
There is no nontrivial class of less complexity for
which P(x,y)=0 is a solution but there are an infinity

of more complex classes. For example, consider



3 n n

e (=) B Aipi P. « AP 1.3
i=1 ¥ 544 4

. n n

o= 4 BH.P, WP, - BP 1
Bmg * B g

where the Ai’s are still nonzero constants and A, 4and B,

are constant but not both zero. Let D(P) be the degree

of P{x,v): The enryes Pi(x,y)ﬂo a¥e still sglutiens; but

since
n n
Di(Ps,) 2. BIP:)-1 and Bl = RPo: T P YSVBER) AT,
1y 1 fmq & A gl 5

the systems given by 1.3 , 1.4 are the next most complex
after those given by 1.1, 1.2  Classes of higher
complexity could be obtained by letting the A;'s be
algebraic functions or by letting A, and B, be algebraic
functions. We consider these systems in Chapter Four.

Let us define class I systems or flows as those

given by equations-1.1; 1.2 or their:limits, c¢lass 11

systems or flows as those given by equations 1.3, 1.4 or

their limits, and class IIT systems or flows as algebraic

flows not of class I or II. Limit flows will be defined
and discussed fully in Chapter Three. Class IIL systems
have not been given as detailed a definition as class I

or IT systems for two reasons. First, defining a more
detailed classification scheme can only be justified after
class I and II systems have been shown to have interesting

and useful properties. Secondly, it may be possible to



show that class III systems are actually topologically
equivalent to systems of class I or II. ‘
It is necessary to introduce class II systems
because in the case of parallel components the Az s off
sguations 1.1 and 1.2 lose most of their effect on the
flow. To see this notice that when all of the Pix’s il
equal and all of the Piy’s are equal, equations 1.1, 1.2

imply that dy/dx=-Pix/P provided Piy%o, The general

iy»
solution is then the parallel flow Pi(x,y)+c. Equations

1.3 and 1.4 lead to nonparallel flows in the same case.

B. The Master Equation

Call the system of equations given by 1.1, 1.2 or

1.3, 1.4 the master equation. Points at which x=y=0

are called critical points. We say that flows given by

the master equation are generated by P(x,y) and we call

the irreducible components af P{x.y) the geperaters.

Suppose that Pi(D,D)rG, then we can always write

IEy
Pi(X;Y) = 02 Pik[x;:y} ’
k::mi

where P,y is a homogeneous polynomial of degree Kk,

Pimi¢0. m, is the multiplicity of Pi at 0,00, & =1,

(0,0) is a simple point of P;, and Pil is the tangent line

te By @t (0,0). We can always factor Pim- into linear
1

factors over the complex field, that is




Tik

Ping 067) = T Ly Goy)

k
where Lik(X,Y) S n * biky, The lines Liy are called

the tangent lines to P, at (0,0); B is the multiplicity

of the line L,y . If P, has more than one tangent line

at (0:8), (0;0) is called g nmultiple point. . Singe we

have assumed that P has no multiple components, the
n

multiplicity of P at {0.0) i85 m = X m. . It should be
i=1

noted that m is the smallest integer such that m=i+j and

amP/axiayj%O at (0,0). The definitions just given may
be extended to any point on P;, say p={xi,yi), by a
translation of the coordinate axes which takes (0,0) to
(xi,yi)n With this extension in mind we have the

following theorem.

Theorem 1.1: Suppose peP(x,y¥). Then p 1s a2 multiple

point of P(x,y) if and omly if 1t is 2

critiegal peint of the master eguabivn.

n
Proof: Suppose pePy only. Now on Pi’ - AiPiy jiin :
: n
¥ o= Re s TR It p as 4 multiple peint
e
n
Px(p}:Py(p)=O, and on P s PX:PiX _H_Pj "
Jrl
n o o
P =P. n-P.. Henee x = =0, Conversely if
iy i (p)=y(p) y

P 15 3 Eritkedl molnlr; Bh Pi we have



n ? n
%= AP T Pj = @ and o= R, TLES SO0,
r g j#i

n
But jgin(p)#O and Ai#O o) Pix(p]=Piy(p):O.

Therefore p is a multiple point. If p belongs to
#§>G@@%3

more than one component then p~has mére than one
tangent at p, that is, 'p is aWEltiple peint.
But we have i(p)=§(p)=0, sior p B8 alse g driticad
point.

QB D

More can be said concerning the number of critical
points which the master equation may have with the help

of the following two lemmas, both of which are corollaries

of the well known theorem of Bezout (Fulton, p. 112).

Lemma: L.1:: Tf two plane curves of degrees D(Pi), D(Pj)
have more than D(Pi)D(Pj) points in common

then they have a common component.

Lemma 1.2: If P is a plane curve with n irreducible

components then

) m(pj)(m(pj)—l) : (DEPY=I) (BLE)~2Z) * Z(n=1),
Y3

where m(pj) is the multiplicity ¢f P at P
Let us call the critical peints which lie on P(x.,7)

natural critical points and those which do not,

spontaneous critical points.




Theorem 1.2: The master equation has at most

Proof:

D(P) (D(P)-3)/2 # n, natural critical

points (in Ez}.

Bach ©ritical point is & multiple. ppint by
Theorem 1.1. Now suppose that the multiplicity
of each multiple point is as small as possible,

namely two. Now use Lemma 1.2.
0.E.D,

Iiet, x=N{x,v) s ¥y=Yixsy), where X and ¥ are given by

éqiatiens 1.1, 1.2 8¢ 1.5 1.4. Lemma 1.1 leads to:

Thewremn 1.3; Glass T flows have at mest D{X)B{Y)

Proof:

isplated critical peoints. Class 11
flows have ot tost DX \D{Y) eratical

points, @all of which arve isclated.

Conisider a class T flow: Snppese X and.Y hawve

no common components, then X and Y have at most
D(X)D(Y) points in comﬁon, that is there are at
oSt D(X)B(Y) eriticel peints. If X and ¥ hawve
a common component, say F, consider X/F and Y/F.
Then the number of isolated critical points 1s

at most D(X/BFYD(Y/E), which is less than D(X)D[Y).
Bvery point en F is of cousise 4 critical poiat,

hence the number of nonisolated critical points



is infinite if P 15 a contimuons curve in B-,

Consider a class II flow. Suppose A,#0 and
F|X, where F is a nonconstant polynomial. Then
F cohtaing a factoxr of Py, for some i, since

n
PI_H_Pj and the Pj's are irreducible. But

J=1
n -
Pi I P: dees ‘not contzin a factor of P: so
¥ j#i 1
n -
F/{’Piy I P.. Therefore F{X. Hence X is
Jid e

jrreducible or ¥ is irreducible or both. 1In any

event X and Y have no common components so we

can have at mest P(X)D(Y) criticél points, and

they are isolated.

QB D,

It should be noted that class I flows may have
nonisolated critical points, for example when all of
the Pi's are parallel, while class II flows cannot.

Next we make some observations concerning P;.

Theorem L.4: a) P: 15 Feadl if and only if Py 1s reals

h)] 3E B. is complex. then P. is complex.
1Hli 1

Proof: The P..'s are homogeneous polynomials of degree k
so they are independent of each other. Hence
a) and b) are true. The truth of c) is obvious

from the definitieon of Lgy. Q.E.D.




The converse of b) is false. For example let P =x+iy?
so P,,=x, then P, is complex but P;; is real. The
conyerse of ¢) is alse filse. Let P =xtiy®, then
L21=x=f11 but Pz%ﬁl.

Since X and Y are to be rveal we may have to place

some restrictions: on the coefficients A;, A, and B..

Theorem 1.5: If X anmd ¥, 4as given by the master equation,; °

and P, are all real then A;, A, and B, are
real. Furthermore 1if Ajzﬂi’ when Pj is

complex and szpi’ then X gnd Y are tegl.

Proof: Consider X as given by equation 1.3. Without loss

of generality suppose that the pairs of conjugate

components of P are P Po e B B B e 8 sz—l’ sz,
where 2ksn. A simple calculation yields
Z 2k-1 e e s n
v T gdd((Ai_Ai+1)PiYPi+(Ai+1—Ai)Pini)j%i?i+1Pj
n i n e
+ i=§k+1(Ai—Ai)Piy j;in + (A -A_ )P

The last term in X-X is the one of largest degree

so if X is real then A_=A_. A similar calculation

with Y-Y shows that Bw=§w. Now consider X-X on

Pi where Pi is real. We have
g o n

(X-X )| = (A=A )P m P.

s, W e



Since P has no multiple components, setting

(X—X)!P.=O implies that Ag-A,;=0 op Piylp_=0. IE
i i
the latter condition holds consider (Y-Y)|
i
P. | and P, | <¢annot buth be identically zeéie
iy'p. ix'p
i i

SO Ai—Ai=0, that is; A; 15 real. Finally, Ai+1=Ai

for 1i$2k-1 and odd, implies that X and Y dre Teal

Q.E.D. -

It will be shown in Chapter- Five that if X and Y iare real

then Aj:Ai when Pj is complex and Pj:Pi, provided Pj fEs

linear.

C. Global and Local Rates

In order to gain a better understanding of the role
played by the A;'s let us consider the rate of flow on

tangents of the generators. Define 0, by

V)
e

Slneik

v
COS8 . = bik 5

v
where aik = aik//|aik12 + |bik12 and

Y
Bap = B lagl ¢ |bjxl2. In polar coordinates Lyy

becomes L.y = v | asn [ & + (il # sifige~647] s

10



To be on Lik medns thae ¢=0., 0T x=r%ik . y=—r§ik,
Note that 0,y may be complex so the point (x,y)eljjy
may not be in . .

If £(r) is a polynomial in r let f(r)* be the

coefficient of the term of f(r) of lowest degree and

designate the degree of the lowest degree term @

by 4% gl ﬁik(0,0) the loecal wvate on Ps at (0,0) in

the 6,4 direction, and define 1;4(0,0) by

n 24 =
Aik(O,U] = .H.Pj(rbik’ —raik)* %
j#i .
n v 2 ny L . 1
% (*Plx(rblk, —Taik)g + Wply(Tblk’ —raikjlz):’c

/2
To extend the definition of A;y to an arbitrary point
p=(xigyi)EPi, we may translate the origin to the point
p by letting x=x+x,, y=y+y;, and then apply the equation -
in the X,y coordinate system. We find
n " "
ho (Kgegd 085 jiipj(rbik+xi’"raik+yij* 3

v n, 2’
% (R CTbapr®y s a4y ) |

Uy 2 r/2
* |?iy(rbik+xi’—raik+yi) ‘ )* / P 1.5

where the kth tangent line to P; at (xi,yi) is
Lage = Bgpli=a;)ebip(r=7;) «
The definition of a local rate on & soiution curve

may be extended to any analytic flow as follows.

11



Suppose P(x,y) is a solution curve which goes through

the origin and let L = r/]ak]2+[bk!2 sin(e-91) be the

kth tangent to P(x,y) at (0,0). Let

A (050) = (X(rgk,»rgk}*/Py(r%k,frgk)*) 2

" "y s ~ 2
y ([PX(rbk,—rak)[2 & |Py(rbk,—rak]l )*1/2

This formula reduces to equation 1.5 when the flow is
generated by the master equation and P is the ith
generator, provided no other generator is tangent to Lk
at. (0,0).  In the general edse, SINCE X and P are
analytic and the degree of the numerator is larger than
the degree of the denominator, the formula is well
defined. However, when we do not know Piixsy) s Apk
cannot be calculated. It is sometimes useful to
notice that
v Ry
X(rbk,—rak)*/cosek ek%iwfz
Apk[0,0) = .
A% u G N5
Y[rbk,—rak}*/51n9k Ok#O
We also have
u ny n, ®
X(rbk,~rak)* = X(x,—akx/bk]*bkq
if byl and
v " & v q*
Y (xBys-tag)* = Y(-byy/ap,y)* (-ay)

if ap#0. So if g*=1

12



X(x,wakx/bk)* bk#O
Apk(O,G)
Y(-byy/a,y)* a; #0
Ik Ly is the kth tangent to severdl gemnerators at
(0:8) then

Apx(0,0) = Eﬁik(O,D) ,

where P is any one of the generators and the sum is
taken over all of the generators tangent to Lk at (0,0 .
The motivation for the definition of Ajy can be

seen by considering the next theorem.

Theoren 1.6: If P i85 @ simple point ¢f P then

n
Ay (p) = Aijgin(pJ/aiz+biz = Y%A (p] Ty= (5)

Propft: Sinee p is a simple point of P 1t can beleng teo

just one component, say P, and Pi has a
single tangent at p. A,,(p) can be written as
Ai(p). Translate the origin to p. Now near p,
P. = . and P. = b., where a, @nd b. are both
1x 1 1y 1 1 1
real, so
" " 2 N " 2 *1/2
(|Pix(£bi’—£ai)l i [Piy(:{bis“f_ai}| )
= va,2+b.*
1 i

At vl
Furthermore Pj(Zbi"Eﬂi)* = Pj(p) i~

13



n R P
= 2 2
A (p) Ay ‘H‘Pj(p)/ai the®.  @nP.

J#d
° n
X = Aipi 1T
¥ i#i J
n
v = il P T P
TG
.2 .2 L
so X°(p) + ¥ (p) = (A; I Pi(p)) (b;°+a;")
it
0.E.D.

Theorem 1.6 has an interesting corollary which
cgn be proven with the help of Theorem 1,2, Erom
Theorem 1.2 we see that the multiple points on the

generators are finite in number; and hence isolated.

Corgllaxy 1.6 &) Ay(p)} is a8 continuous function of

; at simple points.

b} The limit of Ai(p) on Pi as p goes

are length on P

to a multiple point 1s always zero.

Proofis £ (p) = /%% (p)+y2(p) if p is a simple point
ot Pey & and Y are algebraic, hence continueus
in EZ. Therefore Ai(p) is continuous on P,
at sinple points. By Theorem 1.1 the multiple
points of P are also critieal points and
x=y=0 at critical points 50 Ai(p] goes to

zere near critiecal peints. B

14



From the definition of Aik(p} we see that A
is mizltivalued at multiple points. Ayg 18 S1Weys
proportional to A; and Aj#0 so Aik#D unless Pj=Lik
for some j#i. That is, A is usually discontinuous
at multiple points. We shall see in later examples

that Ai may even be complex when Ai is real. Siuece Ai

k
is associated with Pi_and P-1 generally consists of

more than one point, we call A, the global rate on P;.

Once the A.'s are fixed the Ag..'s dre completely
determined so the Ai's are in a sense the primary
dynamic parameters of the flow. However we see from
equation 1.5 that we may always think of replacing
A; by the appropriate constant times Aik(p) for any

pePs .

3 Notice that once A; is fixed at one point of P.

it is determined at every point of Roe The set of A;'s

then constitute an - equivalent set of dynamic parameters
of the flow. A_ and B_ are also global parameters

and we shall investigate the role they play in the next

section.

The parameter A. is a generalization of the
concept of an eigenvalue. We shall see in the next
chapter that if the system is linear, with one critical
point, then P has exactly two components, corresponding
to two eigenvectors, and that there are two values for
A at the critical point. These two vdlues are equal to

£S5



the two eigenvalues. In general it is the values of A
at multiple points which play a significant role in

determining the charactér of the flow. The value of ks
at simple points of Pi becomes important only when Pj
has no multiple points. Exact formulas for A shall be

given for special cases of interest in the following

chapters.

2
D. Algebraic Flows in E i

To gain a better understanding of algebraic flows
globally, Poincare ([1]; p. 3) introduced a method
by which the extended plane, E2+, may be compactified.
Geometrically the method is quite simple. Consider
the unit sphere centered at the origin in Eg, Place
the x-y plane on top .of the sphers so that the origin
is gt W=v=0, z=1. @hepse the dxes 56 that Tthe x axis
is parallel to the u axis and the y axis is parallel
to the ¥ #xis., Preject each point in the x-y plane
onto the sphere through (0,0,0). Call the upper

hemisphere together with the equator the compactified

plane and designate it by cE2*, The flow in CE%Y,

called the compactified flow, is simply the image

under the Poincare prejection of the flow in e e
see that the flow at infinity projects onto the equator
sn the z=0 plane. If we wish to study the flow in B

16



it is convenient to project the compactified flow onto

thé unit disk 1n the u<¥ flabe. B&eée Figdse 1.1,

Fipure 1.1: The ceompacfificdtion of E’* and the
flow in the compactified plane.

Algebraically the compactification is defined by
x=u/z, y=v/z, u+v2+z2=1,
Consider a straight line in the x-y plane given by
y=c. 1In the u-v plane the line becomes v=cvV1-uZ-vZ
or u2+v2(1+c?)/c?2=1, If c>0 and z>0 then v>0 so the

image curve is the upper half of an ellipse. See

17




Figiite 1.2,

c/V1+c?

Figure 1.2% Imdge 6f & stiaight Lidie
H the unit disk.

If c=0 the corresponding curve is v=0. We see that the
behavior of the image curve at points on u?+v?=1 depends
on the location of the preimage curve in the x-y plane.
This means that the flow at infinity cannot be easily
studied in the unit disk.

I Pi(x,y) 18 @ eurve in the ¥y plape.let.us

define the corresponding compactified curve in the u-v

plane, Pic(u,v), by

Pic(u,v) = zniPi(u/z,v/z) "

where z=v/1-u2-v? 20, We may also write

Hi—mi

¢ = k
Pi fu,v) = 20 z Pini_k(u,v)

This definition is only valid when Pi(x,y) is an

18




algebraic function. Pic(u,v) is Pi(u,v) made

homogeneous of degree n; with z. As in the case of
the straight line it may be necessary to square the
equation in order to make the compactified curve an

algebraic function of u and v. Let us call u?+v2-1,

or z=0, the line 4t infinity, and desigmate it by

P (1,
The points on P_ which are also on Pic(u,v) will

be called multiple points at infinity of Pi(x,y).

These points are contaimed in the solutien set of

Pini(u,v) el oy B R 139

1]

Notice that Pini(wu,—v) (—1)niPini(u,V] so the
solutions of 1.6 correspond to symmetric pairs of

points on P_. All of these points need not be connected
with Pic(u,v), 70, For exanple if Pi=y~x2 we have

niﬂz S0 Pini(u,v)=-u2. Of the two multiple points (0,1)
amd (0,-1), only the first is conmnected with Pic(u,v),

p : o
z>0. Boeth points however are on B (u,v) because the

definition includes z=0, See Figure 1.3.

v
Pic(u,vj
£ Fipure 1.3: The multiple
: pointszof
1 0 PiZYHX at
‘1nf1n1tyo
16




To find the flow at infinity notice that x=u/z
and y=v/z imply
dx

(zdu-udz)/z?2

dy (zdv-vdz)/z?2

il

Now Xdy-Ydx=0 becomes

-gY {ufz.vizydu * zX{ufz,viz)dy
+ (u¥Y(u/z,v/z)-vX(u/z,v/z))dz = 0 | o

Equation 1.7 is not well defined at z=0 so let

N=max (D(X),D(Y)) and multiply through by ZN, We also

have
u? + v2 + z2 =1
so
adi, + WV + zdz = D 15
Letting
A(u,v,z) = —zN+1Y(u/z,v/z)
Blu,v,8) = zN+1X(u/zgv/z)

Clu.v;z) = zN(uY(u/z,V/z)—vX[u/z,v/z))

we get, from 1.7 and 1.8,

du = dv = dz
Bz-Cv Cu-Az Av-Bu "
or
du/dt = Bz-Cv

dv/dr = Cu-Az
dz/dt

Av-Bu

20



For zz20 this system gives the flow in CE**. Notice
that it is homogeneous even when the original flow
in the plane is not.

If ¥.,0 are palar ceordingtes 11 fhe Z=0 plane,

consider
r dr/dt = u du/dr + v dv/d-

When r=1 we get
dr/dt = z(Bu-Av) = 0 ,
that is, P_ is alwiys a Sclution. to the system, To
find the flow on P, notice that
deg/fdr = i dv/dr - ¥ dufdr = Clu,v,0) ,

when z=0., A point emn P_ is called a critical poeint

at infinity if

C(u,v,0) = 0 when (u,v)eP_
Critical points at infinity also ceccur in diametrically
opposed pairs.
To see the relationship between multiple and
¢ritical ‘points at infinity for flews genevated by

the master equation consider the next lemma.

Lemma 1.3: For a flow generated by the master equation

n 0.
=L 2dom:] B Paw s (ev) class I
Ged B j=1 JnJ
C(u,v,0) =
n
-(A v+B_u) I P%n_{u,v) gldss 11
(i S

pidi



n n n

Prooft XXy = -~ ¥ AJ(5P. #yP. ) T P - (A y*B x) 1F.
R A e A j=1 -
D
and XPiX+yPiy = kzm_(xpikx+ypiky)
1
_ = D = s 3 ) j ’Q’ = y
but Xplkx”}'y‘ 1ky j+§:ka}’q’(;‘+£)x Bk kplk .
So N
2 (Y lu/z v/ z)-vX i/ z ,v/z2)) ==
Fo i n; Tk
?2N+1 2A.( i kP-k[u/z,v/z)} I P.ilwftz  rlE)
CEey 1 i 1 w1
i=1 k—mi j#L

—zNCAwV+Bmu) il Pj(u/z,v/z) = T,V 8,

Now set z=0 to get the desired result,.
3B

As a consequence of this lemma we may make

several interesting observations.

Thesyram 1.77 For a elass I flow if

ﬁsz

1Aini%0 then:

i
a) There are a finite number of critical
points gt infinitys:b) Each critical point
at infimiky is & mpleiple peoint, and

n
conmersely. 1L Ailn.=0, then every
T

woint @t ipfindty is a. eritical posnt. For
a ¢lass II flow: a) There are ovnly a

finite number of critical pbints at

22



irnefinity: b) Every eritical puarnt at
infinity 1s & mulfiplé poifit exeept for
the ftwe critical peimts given by

A wEB =05 (W )aP. s
Proof: Use Lemma 1.3. Q.E.D.

Call the critienl points piven by A wb u=0, {[u,v}ieP

clags IT éritical Points. We gee from Theorem 1.7 that

all of the diseolated writieal peants at itfinity should
be considered to be natural critical points.

Te study the flow at infinity it ds. medessary TH
project the flow from GES" ento @ plane tangent to the
sphere at the equator. Without loss of generality
consider the tangent plane at u=1l, v=0. This plane is

called the projective plane. Let the +n axis be in the

same divéction as the +v axis and the +t axis be in the
same direction as the *z axis. I£f (u,v,2z) 15 & point en
the unit sphere its projection onto the n-f plane is

given by
n=V/U,€=Z/U

Using the equation Au+Bv+(Cz=0 we have
dn/ds = Clu,v,2z)/u2 , di/ds = -Blu,vyz)/u®. 1.9

L

1f we now divide both equations by u and replace

TUN—l by ¢ we have the flow im the n-& plane. Let
h B N
X E'ﬂsg) 5= (Z X(U/Z,V/Z))(I;H,EJ I10

25



Yh(n,8) = (2 Y(u/z,9/2))(1,n,2) i A7

Lemma 1.4: dn/do = Yh(njg)mnxh(n,g)
deg/do = -£Xh(n>E)

Progf: Use eguations 1.9; 1.10 and 1.11. QB D

If we wish to study the flow at some point (u®*,v¥)
ori the line st infinity eother than (1,0] we may do se
by considering the rotated flow. Let eztan_%v*/u*),

The rotated flow is given by

X = XR(x,y) = Xlx,y)lcose + ¥(x,y)sine
§ = YR(x,y) =. <X,y ising & Y. ylcose ,
where X5 X eosh 'y s8I0
Yy = X .Sikng k¥ a8

The vector field (XR,YR) is just the weetor fieid [(X,Y)

rotated by -0 dépgrees, We nay now set
h h
[dn/dc}'!(u‘}:’v*J = YR_ (nag)—nXR (ﬂ»g)
(dg/do) = -&X h(n &)
(u'k,vfc) “R 3
Let us now define the transformation T, by
To(Y) = ((dn/do) | (ya yay » (dE/d0) | (yn yay)
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Since the rotated flow has the same topological
characteristics as the original, we could make the
equations for class I and class II flows look more
similar in form by letting B,=A,, without losing any
generality. This convention would simply place the
¢lags Il criticasl points at {il//?,;l/JEjer. It
should also be noted that the rotated flow has the

same form as the original if the original is generated

by the master equation. Let the rotated curve, P.p,

be given by
PiR(x,y) = Badi, ¥ . 112

Then
; n n n
x = X (%, 7] = iilAiPiRy(X’Y)jiinR(X’YJ + Aijzlij(x,Y
) n n n
Y= Yplg.y) = -iiIAIPiRX(x,Y}jilij(Xay) 2 BijElD R (X,
where AWR = A wesh = B  sinp

BWR = B gine B GEE0

Suppose we have a flow in the x-y plane given by

i=X(x,y), &zY(X,y), Consider the translated flow given

by i:XT(X,y)=X(x—a,y—b), y=Yop(x,y)=Y(x-a,y-b). Since
D(XT):D(X) and D[YT)rD(Y)? NT=NE Now C(u,v,0) is equal
to the N+1 degree terms of uY-vX and CT(u,v,Oj is egual

to the N+1 degree terms of UYT“UXTﬁ hence
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e S I o CT(U,V,O].
The two flows have exactly the same critical points
at infifitiy. The translation of the arigin te (a,b),
which takes the first flow into the second, induces
a homeomorphism between the corresponding flows on
the Poincare sphere and hence induces a homeomorphism
between the flows in the projective plane. We have

proved the following theorem.

Theorem 1.8: The flow at infinity (in the projective

plane) is topologically independent
of the position of the origin in the

X-y plane.

The flow near points opposite one another on the
line at infinity posseses a simple symmetry due to the

nature of the Poincare projection.

Theorem 1.9: If the flow at (u,v)eP,is given by

dnfds = Rln,2), d&/de = Tln,k)
then the flow at (-u,-v) is given by

dn/dgz(-i)N“R(n_;a) . da/do={—l)NT(n o el

Proof: Without loss of generality let (u,v)=(1,0). To
find the -flow at f[=lyQ] rotate the original

flow by -180°. The rotated flow is given by

xeXp 06, ) =X -] §=YR(X,YJ="Y(ﬁx,ky)e Now
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h
Xy (n,8) = (X (w/z,v/2)) (1,m,¢)

(-1 -yt v - ) £ g )

1t

NN wsz,v2)) (1, e)

:
I\+1Xh

(_IJ (n7"€}ﬂ and

h
YR (H,8] = (-1)N+1Yh(n,-g). Using Lemma

1.4 we have

dnddle = EaI Iy, —d-nl s el o o R )
QB T = ST 1T Y e i, 0 e -ty P e Y B
dndde = -2 ¥, ) el = P, E) e Aesivad.

BB,

Notice that the second set of equations in Theorem
1.9 can be obtained from the fivst, 1f N 1s gad; by
replacing & by -g£ throughout; and if N is even, by
replacing £ by -£ and t by -t. N odd corresponds to a
reflection about the n axis and N even corresponds to
a reflection about the n axis plus a time reversal.

See Figure 1.4.
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g

e
D4

(R(n, &), T(n,8))

;\

AN
-,

£ £
P e
B B

(~Rilnu~E) s T0hHs~8)) s N sven (R(n,-&), -T(n,-£)), N odd

Figure 1.4: The fleow at symmetric
peints. en B .

Let Pih(n,é) (ZniPi(u/zgv/z))(l,n,EJ

nj-my

1l
1

k
g Pini_k(lsn) .

k=0

1..13

1l

Theorem 1.10: For a flow given by the master equation

n n T
dn/dd!(l 0) = =L{E oz Aini)+nAm+Bm]_H Pj fw; )
> d==41 j=1
n n h

2?5 SR el B s

il 2 g

2 h L ol
de/d =-t£[g ¥z A.P. . P B AL TR 2 5
g/dol (1 o iz 2 & in (0 a)j%i 5 (n,8) it En. 501
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Proof:

h h
n;. Y (n,&)-nX (g

| R e

Suppose A2+BZ>O, then N=

o =
is xY(x,v)-¥X(x,v) made homegeneous of degree N+l
with z, evaluated at x=1, y=n, 2Z=E¢.

‘T
Ko (P, +yP. J I P.(w,y)

XY oyXas & ;

i

[

n
= R HER.

B:dx )
: j

1

SO :
vhis ey - nilignge) =

n B 1
"[ZiEIAi(XZ Pix(x/z,y/z)

T n n-
+ ARG =B el Ay WoE YRR v 7]
1y j#1 J

. {yh #xB )
J

| e e

n-
z JPj(X/Z,Y/Z)](l,ﬂpE)-
1

Using the fact that
XPin{X’Y) + yPijy(X:Y) 5 jpij(XBYJ
We may write

Ritlp (x/z,y/2)eyr TRy (x/2,5/2)) (1;n,8)

(xz

n

(

i -m

k

1

1 Je :
- z ExPini_kCX,Y)+YPini_k(x,Y)))(1,n,€)

1 e |

n..m
1

k

1 k
= ( (ni_k)z Pini_k(XSY))(l,n:g)

[ B

0
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= ni(zniPi(x/Z,y/Z))(l,n,a)

s ..m. T d
3 (Z E kz Pini_k(st])(l,n,E)

= P . P E
= n P (n,8) - ¢ ig(n,i)
Hence dn/dgl(l,O) is as claimed.

h
X (n,&) is X(x,y) made homogeneous of

degree N with z, evalwated at x=1, y=wn, z=t,

n ni—l n nj
= [Z.E Aiz Piy(x/z,y/z).n 2 ~B. efe,vfz)
il j#i J
n s
A B S 835100, n E)
j=1
Now
ni-l
(Z Piy(X/Z,Y/Z))(lyﬂ,E)
Ty il
= {7 2N, ) (I CLamyE)
k=0 ; ini"k Y b ] : s s
Wl oMY
Rl A8

h
= kzo (2 (P'ni“k)n(l,n) - Pin(n,E)-

Hence d«E_',/c'lc:rl(1 0) is as claimed.

1f A2+B”=0 the formulas for dn/dc|(.1 i

and dg/dc[(l 0) reduce to the correct
expressions provided we delete a factor of ¢

from each., Q.B.B.,
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I'm the previous section the legal rate on Pe at
points in B’ was defined. If P; cofitaing points at
infinity the definition of a local rate on P, may be
extended to these points with the aid of Theorem 1.10.

Suppose P; has a multiple point at (1,0)eP,. Call

g?k(l,OJ the local rate on P. im the eik direction at

infinity, and define Azk(lsﬂ} by

© 1 wh CA n h w51k wh 4
Ao Clall = raey b, jgipj (rb o e T

h 2 1/2

h i B T h
,-razq) | +|pi£(r%ik,-r§ik)] VoY T

ik

h h ~h
Y] s /
where aikﬁaik’d’ bik

B
% ([pln(rb

23,11 wor oy Bty ool
=b2 /d, rd=(al 2+bT 2) 1% cand the kth

= h +bh
e
flows and =2 forwclass 11 flows. . See the general

) h
tangent to Pih at n=&£=0 is Li Let c=1 for classI

definition of A; in Section C. If the multiple point

does not veecur at (1,00eP_ apply 1.1%4 to the appiopriate

h

h £
rotated flow, that is,; ‘replace Pi; by PjR i el e T

J
in equation 1.14.

Lot ms now define the lecal Tite om P, at (1,01,

4,(1,0), by

n n h
= % Ain-) I B, (7,0)% classil
s i S e 3l
i=1 ji=1
A (1,0) = 1,15
;. h
={ i #B J& T Pj [, A)% class 11
3=

h
Using equation 1.13 we may replace Pj CE, Q) by
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Pjn_(l,r). For a class I flow we call
J i

plobdl rdte on P and for a class 1l £low, (PA *B_ 1%

is called the globgl rate on P,. For a glass I flow

the flow at infinity is completely determined by the
5 .
flow in E°, while for a class II flow all but the rate

on P, is determined by the flow in E2°

E. Topological Equivalence of Flows in §2+.

I1f we wish to study a flow in E2+ analytically,
we may do so by considering the finite flow in B2 and .
if the flow is algebraic, the flow at infinity in the
projective plane. The space CE2+ is not an apprepriate
one in which to study the flow analytically because in
CEZ+ we have three differential equations involved
instoad of two. Howeiver if we wish to study the flew
if E2+ topologically, meither E2 nor the projective
plane is the proper space because each gives an
incomplete picture. In this case we should use CE2+
With these considerations in mind we will base our
+

2
topological definitions in CE

24 =
A vector cuxve id B , designated by S5(t), is a

continuous, differentiable, oriented curve which has

associated with each point a nonzero tangent vector

pointing in the directien of the oerientation, We may
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extend this definition to one point curves by calling

such curves zero-vector curves, and associating the

zer0 vector with these curves. Every solution to the
system x=X(x,y), y=Y(x,y), provided X and Y satisfy

certain minimal regularity conditions, 1s a vector curve.
The critical points correspond to zero-vector curves.

>
Let the compactified vector curve, written CS(t),

be the projection of g(t) onto CE°Y . If we let
dys(t) = |CS,(t)-CS,(t)]
Vi, (6) = €8, (6)/163,(0) |-C85 (0)/1¢8, () |,

where \Cgl(t)wcgz(t)] is the EBuclidean distance between
the twe points, C€&,(t}) and CS,(t). on the unit sphere,
and c§(t3/1c§(t)|=5 if g(t] is a zereo-vector curve; then
we say that

>
S

—
12

p
So for e>0 D 9 G

>+ e 2+ .
provided €S, £ €S, in CE' . The latter relation holds

¥ Y + =5
if both 1im . diy(t)<e and %igwlvlz[t){<€. If =0 we

T+t

-+ >+
Ay B8y = By

: 2k ; : .
Let s call any open set im E which is either
connected, or becomes connected when one additional
point is added, a region. Two sets of vector CUrves

2 y
defined in regions R, and B of E°7 are o-equilvalent

2 2+ . > : ; ;
in E if there exists an orientation preserving
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homeomorphism of CR, onto CR, (CR is the image, under

5 s 2 . 72 5 s
the Poincare projection, of R in CE +J which induces

a biunique mapping

curves onto the second.

filling a region R

it is o~eguivalent

annularly parallel

- s .
in CE from the first set of vector
A collection of vector curves

2+
of E i5 called styip paraillel if

2

to E

filled by parallel lines,

if it is oseguivalent fo E2¥{(O,O}}

filled by concentric circles, radiglly parallel if it

is o-equivalent to
emanating from the

18 O-esgudvalent to

EZ-{(0,0)} filled with rays

grigin, and spiralbly payallel 5f it

E2~{(D,G)} filled by spirals

emanating frem the origin. A cellection of Vector
curves satisfying any one of these four cases is
called parallel.

I£ {8] A2 a set of vecter curves which £1lls 2k
then any two curves, §1(t), gz(t)e{S}, are called
if g given any e>0,

ge-parallel there 15 41t anteger

M(e)<» and a corresponding finite sequence of vector

-+

L =
E.T, &x

o
"’,TMS{S} such that; a) S,

> =

T, s S

B TM

L)
S, belong to the same parallel

< -+
chryes Ty £ Sy,

s
and. b)Y 85, M?

region for |t]lee. A mector curve e-pardllel to mno

pthers in {8} is ealled a separateix and the set of

all such vector curves, denoted by {g}, is called the

e
separatrix system of {S}]. Two vecter curves, &, (t)
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>
and 8;(t),; not necessarily belonging to the same family

4 -+
pif verter curves, are cdllad O-pargllel af; &) &7 # 5y

and b) $; and gz are o-equivalent for |[t]<w,

It is clear from the definition that the e-parallel
relation is an equivalence relation on {S}—{E}. This
set is then partitioned into disjoint equivalence
clagses, each class corresponding to a parallel region
in the plane bounded by members of {g}, Let each such

region be called a canonical region and call any vector

curve belonging to a particular canonical region a

canonical representative of that region.

Now consider the family of vector curves associated
with a particular system of diffetrential esquations
R=Nlm ) o TN - AR CE’" the separatrix system
together with a canonical representative from each

canonical region is called the phase portrait of the

flow or system. Sometimes the projection of the phase

portrait onto either E2 ot the unit disk in the u-v

plane, or the projective plane, is also called the

"phase pertrait™ but these projectiens, taken

individually, cannot give a complete picture of the flow.
Singe it <is difficult te draw the true phase

portrait on a two dimensional surface we will use a

distortion of the true phase portrait arrived at in the
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following manner. The flow in the finite plane will be
represented by a projection of the corresponding phase
portrait omte the unit disk in the i-¥ plane. AL sach
point on the equator consider the flow in the upper half
of the projective plane near the origin and rotate this
flow onte the wnit disk frem dbove. The vector curves
will be somewhat distorted by this rotation but the angle
between any vector curve and the n axis will be equal to
the angle between its projection and the tangent line
ty thie wnit disks

If two flows have o-equivalent separatrix systems
in CE?* and if in corresponding canonical regions the

canonical representatives are 0O-parallel we say that they

are space-equivalent in E?*. Two flows are called

time-equivalent in E?* if they become space-equivalent

when t is replaced by Kt in one of them, K being a
nonzera constant. Flows which are either space-equivalent

or time-eqguivalent in BEZ* ate ealled teopolegically

equivalent in B2*.

Lemma. 1.5 IEf Py Ss replaced by oy in the master equation,
where c#0, then the new flow is time-equivalent

in E2* to the old flow.

Proofs: Bach term dn X and ¥ gains a factor of @ 4f Pi

is real, and |c|? if P, is complex. Replace
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& by tfe or t/[c|2. Q.E.D.

We are mainly interested in algebraic systems of
differential equations in E®* but the above topological
definitions may be applied to any system which satisfies
local Lipschitz conditions in regions which do not
gontain ecritical points, that is, systems which genérgte
regular curve families. The definitions themselves are
primarily extensions of those given by Lawrence Markus [1].
Markus concerned himself exclusively with regular flows

2 and considered solution curves rather than vector

in B
curves. Henee gur detinition of é-parallel:veclor curves
in E2* is stronger than his corresponding definition of
parallel curves in E®. The stronger definitions lead to

a finer classification of the algebraic flows, which

is alseo easier to obtain. MUsually the topologiceal
equivalence of two flows will bhe obvious from their phase
portraits. The definition of "separatrix system" was
chesen so0 that algebraic flows have simple phase portraits.
The topological consequences of our definitions and the
exact relationships between our definitions and those

used by previous authors, will be left to the reader.

The following chapters contain many examples which are

intended to illustrate and delineate the concepts

intrpdueed in this whapter.
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